Reactions of Oxygen with Tris(di-isopropylaminato)chromium(III)

By JAMES C. W. CHIEN* and WALTER KRUSE

(Department of Chemistry, University of Massachusetts, Amherst, Mass. 01002; and Hercules Research Center, Wilmington, Delaware 19899)

and D. C. BRADLEY* and C. W. NEWING

(Department of Chemistry, Queen Mary College, Mile End Road, London, E.1)

Summary Oxygen reacts rapidly with tris(di-isopropylaminatochromium(III); depending on the conditions, an unstable complex $Cr(O_2)(NPrl_2)_3$ may be isolated and a chromium(IV) complex of di-isopropylnitroxide has been detected by e.s.r.

RECENTLY there has been an increased interest in the reactions of low-valent transition-metal compounds with oxygen¹ with emphasis on the understanding of the diversity of reactions pathways. Bradley and his co-workers^{2,3} have shown that the use of bulky ligands produces reactive metal complexes containing co-ordinatively unsaturated metals. Of special interest is the highly reactive monomeric $Cr(NPr_{2})_{3}^{2}$ which gave rise to a relatively stable mononitrosyl $Cr(NO)(NPr_{2})_{3}$.⁴ We now report some interesting results on the reactions of $Cr(NPr_{2})_{3}$ with molecular oxygen.

A dilute solution $(10^{-4}\text{M} \text{ in heptane or toluene})$ of $\text{Cr}(\text{NPr}^{i}_{2})_{3}$ gave an e.s.r. signal (Figure, A) consisting of a single symmetrical line $(g = 1.975; \text{ width } 10.8 \text{ gauss})^5$ but like $V(\text{NR}_{2})_4^6$ showed no nitrogen hyperfine splitting. Addition of small amounts $(10 \ \mu\text{l})$ of oxygen at low temperatures $(ca. -90^{\circ})$ caused the disappearance of this signal which was replaced by a new one (Figure, B) which in turn was replaced by a third signal (Figure, C).

Species B $(g = 1.971; a_N = 11.46; a_H = 3.34$ gauss) shows coupling with one nitrogen nucleus and two equivalent protons, whilst C which is clearly resolved $(g = 2.0026; a_N = 15.0; a_H = 3.9$ gauss) may be identified as di-isopropylnitroxide.⁷ Species B was unstable even at -90° whereas C was reasonably stable at room temperature and was also obtained directly from A by a single addition of an excess of oxygen. Addition of an excess of oxygen to dilute solutions of $Cr(NPrl_2)_3$ at room temperature caused loss of signal A without the formation of B or C. Small additions of oxygen to dilute solutions of $Cr(NPrl_2)_3$ in tetrahydrofuran at low temperature caused the disappearance of A and the formation of C without the intervention of B. At higher concentration $(10^{-3}M)$ in heptane, the reaction gave broad signals whose g values could be related to those of B and C without resolvable hyperfine features. At $10^{-2}M$, the reaction led simply to the loss of signal A.

FIGURE. E.s.r. spectra of reaction mixture of $Cr(NPrl_2)_3$ and oxygen

A reaction pathway consistent with these observations is as follows:

$$\operatorname{Cr^{III}(NPr_2^i)_3}(A) + O_2 \rightarrow \operatorname{Cr^{IV}O(NPr_2^i)_2}(ONPr_2^i)(B)$$
 (1)

$$B \rightleftharpoons Cr^{IV}O(NPr_2^i)_2 + ONPr_2^i (C)$$
 (2)

$$2ONPr_2^i \rightarrow Products$$
 (3)

$$\operatorname{Cr}(\operatorname{NPr}_{2}^{i})_{3} + \operatorname{ONPr}_{2}^{i} \rightarrow \operatorname{Cr}^{\operatorname{IVO}}(\operatorname{NPr}_{2}^{i})_{2} + \operatorname{Products}$$
 (4)

Species B is considered to be a nitroxide complex of the chromium(IV) compound for the following reasons. The spectral parameters are consistent with a nitroxide complex and are significantly different from those of the free nitroxide

radical. Also dialkylnitroxide complexes with metal compounds are known and in (R₂NO)AlCl₃⁸ the large value of a_N compared with the smaller value in B may well be due to the absence of *d*-electrons in aluminium and their presence in chromium.

When oxygen was added to more concentrated solutions (ca. 1M) of $Cr(NPr_{2}^{i})_{3}$ in pentane or toluene at 0° the e.s.r. signal due to $Cr(NPr_{2})_{3}$ (g = 1.977) did not disappear but was considerably enhanced in intensity without changing its g-value. No nitroxide radicals or complexes were detected under these conditions. However, addition of oxygen to $Cr(NPr_{2}^{i})_{3}$ in pentane at -10 to $+5^{\circ}$ led to the isolation of a very volatile unstable blue crystalline compound D which gave a satisfactory chromium analysis for

Cr(O₂)(NPr¹)₃ or CrO(NPr¹₂)₂(ONPr¹₂). Its electronic spectrum (mull) gave bands at 30,100; 17,870; and 14,180 (sh) cm⁻¹ whilst its magnetic susceptibility gave temperature and field-dependent values for μ_{eff} (2.03 at 0° to 1.58 at -175°). The mass spectrum gave a peak at m/e 284, corresponding to (D less NPri₂). In the i.r. spectrum a strong band at 980 cm⁻¹ not present in Cr(NPr¹₂)₃ could well be due to a Cr=O stretching frequency. Further discussion of these results is deferred until full details and additional results are published later.

We (D.C.B. and C.W.N.) gratefully acknowledge support from Owens-Illinois, Toledo, Ohio.

(Received, July 20th, 1970; Com. 1176.)

¹ H. Taube, J. Gen. Physiol., 1965, 49, 29; T. G. Brilkina and V. A. Shushunov., Russ. Chem. Rev., 1966, 35, 613; R. Ugo, Coord-Chem. Rev., 1968, 3, 319.

² E. C. Alyea, J. S. Basi, D. C. Bradley, and M. H. Chisholm, Chem. Comm., 1968, 495.

^a E. C. Alyea, D. C. Bradley, M. F. Lappert, and A. R. Sanger, *Chem. Comm.*, 1969, 1064.
^a D. C. Bradley and C. W. Newing, *Chem. Comm.*, 1970, 219.
^b J. C. W. Chien and W. Kruse, *J. Chem. Phys.*, in the press.
^e C. E. Holloway, F. E. Mabbs, and W. R. Smail, *J. Chem. Soc.* (A), 1968, 2980; D. C. Bradley, R. H. Moss, and K. D. Sales, *Chem. Comm.*, 1969, 1968, 2980; D. C. Bradley, R. H. Moss, and K. D. Sales, *Chem.* Comm., 1969, 1255.

7 A. Hudson and H. A. Hussain, J. Chem. Soc. (B), 1967, 1299.

⁸ B. M. Hoffman and T. B. Eames, J. Amer. Chem. Soc., 1969, 91, 5168.